Year Nine Programming

Data types, structures, string handling and iteration

An **array** is like a variable, but can have more than one item. Think if it as a list. The first item ("Melissa") is item 0. "Liam" is item 5.

Iteration: repeat sections of code as long as a condition is met.

len(array) will give you the number of items in an array.

String handling: Manipulation of string variables:

name = 'John'

name.upper()

>>> 'JOHN'

name[0]

>>> 'J'

Name[0:2].lower()

>>> 'jo'

Data types: Data used by programming languages must be of a certain type. This means what kind of data it is. *Boolean* data is True or False. *Integers* are whole numbers. *Float* (or real) are any numbers. *Strings* can contain any characters. Data input is a string by default and must be converted before it can be used like another data type.

```
from random import randint
# array data structure
pupils = ["Melissa", "Gabe", "Corey", "Alanah", "Darcy", "Liam"]
# Boolean variable
                     Boolean variables can be True or False
var again = True
print("Welcome to the random pupil picker")
input("Press enter to get a random name")
# iteration - repeat the indented code as long as var again is 'y'
while var again == True:
    # get a random number between 0 and the number of items in the array - 1
    random number = randint(0,len(pupils)-1)
    # output the corresponding name
    print("Selected student: " + pupils[random number])
                                              You can refer to an item in an array by
    print("Pick another pupil? Enter 'y'")
    ans = input()
                                              typing the name of the item, followed by
                                              it's position in square brackets. For
    # convert answer to lower case
    ans = ans.lower()
                                              example, pupils[0] is 'Melissa'
    # selection statement(if/else). If the user doesn't enter 'y' ...
    if ans.lower() != "v":
        var again = False
# After the loop
print("Thanks for using the random pupil picker")
```

pup ^{ilis} array	Position	0	1	2	3	4	5
	Data	'Melissa'	'Gabe'	'Corey'	'Alanah'	'Darcy'	'Liam'

Computer Science Basics

Binary Number System

Converting **binary to denary** numbers. Example: Convert 01110101 to denary.

1. Write the place values above each bit (1 or 0).

Place value	128	64	32	16	8	4	2	1
	0	1	1	1	0	1	0	1

2. Add up the place values where there is a 1 below it.

64 + 32 + 16 + 4 + 1 = **<u>117</u>**

Logic Gates

Name	Graphic Symbol	Algebraic Function	Truth Table
AND	A B	F = A + B or F = AB	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR		F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	AF	$F = \overline{A}$ or F = A'	A F 0 1 1 0

von Neumann Architecture

In 1945, John von Neumann proposed a design for computer systems which is still used in most computers today.

Computer programs (instructions) and data are stored in **memory**. Instructions are **fetched** in sequence by the **central processing unit** (CPU). They are then executed **one-at-a-time**. Instructions and data travel between components on wires called a **bus**.

Above: data and instructions move between computer components on buses.

Left: Instructions are fetched in sequence from memory (RAM). They are then carried out (executed) by the CPU. Data (your work) may be stored in RAM.